If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16X^2+8X+40=0
a = -16; b = 8; c = +40;
Δ = b2-4ac
Δ = 82-4·(-16)·40
Δ = 2624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2624}=\sqrt{64*41}=\sqrt{64}*\sqrt{41}=8\sqrt{41}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{41}}{2*-16}=\frac{-8-8\sqrt{41}}{-32} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{41}}{2*-16}=\frac{-8+8\sqrt{41}}{-32} $
| 10+6p=-26 | | 5/4x+17=-3/4x+29= | | 12=1/3d | | (x/6)+9=14 | | 64+5x=55 | | -15=3-2x | | 9x-15=12x+6-10x | | 2x—13=13 | | 4+v/9=3 | | 4aa=7 | | 3n+n-2n-2n+8n-8=16 | | -11f=7(1-2f+5 | | 1.7x=3.4 | | (w/7)-2=3 | | 23j+7j-24j+7j=26 | | 2x-4/2-1+x/8=5x-4/4 | | 2/3(x-6)+3=5 | | 21+2x=81 | | 1/12y+4=-9 | | 5x+2x-5x+6x+x=45 | | 3(1-3x)=2(7-4x) | | 4-8a=-124 | | 2=15/3r | | 14x+3x-7x-9x=16 | | 6x-99=6x+1 | | 9x+8=12x | | 20x+12=112 | | 3w-2w-w+5w=20 | | 6n+3=72 | | 12x-40=7x-27 | | 1/8y+3=-16 | | 16c-13c-c=18 |